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Abstract—Steady state two-dimensional temperature distribution and heat flow in prismatic bars with
isothermal boundary conditions and various external geometry were computed and tabulated. The
method of conformal mapping was used.

Résumé—Le flux de chaleur et la distribution de température bidimensionnelle, en régime permanent,
dans des barres prismatiques avec des conditions aux limites isothermes et des géométries extérieures
variées ont été calculés et tabulés. La méthode de la représentation conforme a été utilisée.

Zusammenfassung—Mit Hilfe der konformen Abbildung wurde die stationdre zwei-dimensionale
Temperaturverteilung und der Wirmefluss in prismatischen Krpern mit isothermer Begrenzung und
verschiedenen dusseren Abmessungen berechnet und in Tabellen angegeben.

AMHOTAIMA—/[aHO aHANMTUYECKO® PEMIeHHe CTANMOHAPHOTO JABYXMEPHOTO TeMIepPATYPHOTo

TOJIA I ONPefelIeH TENNOBOM MOTOK B IIPHAMATHYECKUX GDYCKAX IpH MB0TEPMAYECKHX T'pa-

HIYHBIX YCTOBUAX M PAsiuyHOl BHemnHell reomerpun Gpycrkos. Pemenne compoBosgaerca
pacuérami, nOpejcTaBIeHHEIMI B BUAE TAOINI] H PACYHKOB.

NOMENCLATURE n sided regular polygon
General A, coeflicient of the »’th term in a poly-
k, thermal conductivity; nomial;
L. the axial dimension of a prismatic a. the shortest distance from the center
bar; to a side of a regular polygon;
Q. heat flow rate; Js running index;
S, shape factor; n, number of sides of polygon;
T, temperature at a point (x,y); P non-dimensional ratio of radii as
T,. temperature at the inner boundary; defined by equation (4.1).
Ty temperature at the outer boundary;
W, complex number in the ¢,%¥ plane; Rectangle )
x,y,  Cartesian co-ordinates of a point; a, ?;ia;lgg_ of the shorter side of a
bV‘2, izr&gﬁ);f 131;3 Zf[ ;?; the x.y plane; b, one half of the longer side of a
4, difference;; rectangle;

K, a constant term as defined for a

6. 1 -ordi f int; .
i~ porar co-ordinates of a point rectangle by equation (5.5a).

#,%¥, Cartesian co-ordinates of a point in

the mapping plane; Eccentric circle

$o. ¥y, values of ¢ and ¥ at the outer €, eccentricity ratio as defined in Fig. 9.
boundary;

¢, ¥,, values of ¢ and ¥ at the inner Ellipse
boundary. a, the major axis of the inner ellipse;
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b, the minor axis of the inner ellipse;
c, the major axis of the outer ellipse;
d, the minor axis of the outer ellipse.

STATEMENT OF THE PROBLEM
THE steady state temperature distribution and
heat flow in prismatic bars of various cross-
sections are to be investigated. The bar material
is assumed to be homogeneous, isotropic and
with temperature-independent properties. The
heat flow is due to central heat sources uniformly
distributed along the bar axis maintaining uni-
form surface temperature.
The geometrical shapes considered are:

”

Class 1—“n-sided” regular polygon with small
circular hole in the center. Special
cases: triangle, square, pentagon, hexa-
gon, heptagon, octagon, nonagon,
decagon, circle.

A circular bar with an eccentric hole.

Class 2—Rectangle with small circular hole in
the center, and with variable *“‘aspect
ratio”.

Class 3—Elliptical cross-sections with a confocal
elliptical hole, and with a confocal
slit (a slit connecting the foci of the
ellipse) as inner boundries.

THEORETICAL CONSIDERATIONS
Solutions of the problems will be obtained by
the method of conformal mapping. A short
review of the method follows [1].
The temperature distribution in the systems

satisfied Laplace’s equation,
aer T
—ra =0
2%

in the domain of the x,y plane with the tem-
perature T == T, and T = T; along the boun-
daries ¢4(x,)), the outer boundary, and ¢,(x.y),
the inner boundary, respectively.

It can be shown if ¢ and ¥ form a new co-
ordinate system given by

¢ = ¢(x.)
¥ = ¥(x,y)
such that
we=¢ +i¥ = f(x + iy) =f(pef) = f(2)
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with the conditions that f(z) is analytic and
f'(2) is not equal to zero, then the temperature
distribution in the new co-ordinate system also
satisfies the Laplace’s equation

eT T

2 . . [,
VT =nmt o™=

0
and the temperature at the boundary ¢ = &, is
T,, and correspondingly, at ¢ = ¢,is T, [2-4].

The application of this method is done by
choosing a known solution in the ¢.¥ plane,
and by an appropriate choice of the mapping
function, f'(x 4 iy).

The simplest solution in the ¢, ¥ plane is for
one dimensional heat flow, with the boundary
conditions that along ¢ = ¢, the temperature is
Ty, and along ¢ = ¢,, it is 7,. Then

¢ — ¢
T—To=(T =T g—," (1)

The heat flow for the one dimensional case
between the flow lines ¥, and ¥, is, according
to Fourier’s Law, equal to

A¥
Q=kT;,—Ty py—y L (2)

where L is the width of the bar and 4¥ = ¥, —
Wl‘

It can be shown that the resultant heat flow
computed in the ¢,¥ plane is identical to the
heat flow in the x,y plane. The heat flow per
unit width is

o k4¥ _
e VA &
L =g =
or
% = kS(Tl - To)
where the shape factor, S, is defined as:
4¥
S 3
b0 — & @)

STEADY TRANSVERSE HEAT FLOW IN
PRISMATIC RODS WITH “»-SIDED” REGULAR
POLYGON CROSS-SECTIONS

Consider a long regular prismatic rod with
a concentric circular hole, Fig. 1. The tempera-
tures at the inner circular boundary, and at the
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n= Number of Sides of Polygon

FiG. 1. Prismatic rod with “n-sided” regular poly-
gonal cross-section.

outer prismatic boundary are T; and T respec-
tively.

The mapping function which transforms the
one dimensional heat flow in the ¢,% plane into
the configuration of Fig. 1 is

w=¢ +i¥=2Inz 4 EA:M pinetind (4.0
j=0

n == number of sides of polygon,

;
P

The choice of this particular mapping function
was due to:

(a) The influence of the power series
diminishes toward the center. The lowest
power of 3, for the case of a triangle, does
not appreciably distort the temperature
near the source.

(b} The “n” fold symmetry accounts for the
geometry of the “m-sided” polygon. On
the outer boundary the contribution from
the source is small compared with that
from the power series.

The real part ($) is:
¢ =1In p 4 Ay + A,pt cos nf
+ Ay p? cos 2u8 + Ag,p* cos 3nb + .. (4.2)
and the imaginary part (¥) is:
¥ =28 + A, p" sin nf
- Ay 0% sin 200 4 Ag,p* sin 300 ... (4.3)
The coefficients Ay, A4, 45, and 4, can be
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computed to yield the value of Ty or {¢, = 0) at
the points A, B, C, and D, considering only the
first five terms of the series solution, (4.2).
The values of these coefficients are given in
Table 1 for various values of “n”.

Table 1. Coefficients Ay, Any Az, and As, for various
values of “n” to be used with equations (4.7) and (4.8)

nl A An Ao | A
3| 113916 | 183402 | 109469 | 039984
4| 054159 | 059131 | 005767 | 00079
5| 032131 | 029838 | —00111t | 001183
6 021339 | 018145 | —001839 | 001355
7| 015214 | 012233 | —001704 | 001276
8 011397 | 008818 | —001457 | 001123
9| 008832 | 006642 | —001218 | 000972
10! 007076 | 005201 | —001029 | 0-00841
© 0 0 0 0

The method described above results in an
approximation, and the outer boundary tem-
perature is equal to T, at the few points selected.
The maximum deviations from the constant
value (7,) were computed for the triangle and
square, expecting the largest error in these cases.
The deviation is less than (T; — 1,)/150 in the
case of the triangle, and (7; — 77)/2000 for the
square, Therefore, for all practical cases, along
the outer prismatic boundary, the value of ¢ is:

o =0. 4.4)

Along the inside circular boundary for small
values of p{p; < 1}

¢ =1n pf + A, (4.5)

resulting in & constant temperature along the
inner circular boundary.

Since 6 varies from 0 to 2= in the x,y plane,
then from (4.3)

4Y¥ — 4n. @.6)
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FiG. 2. Shape factor versus number of sides of
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FiG. 4. Temperature distribution in a prismatic rod with square cross-section.
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FiG. 5. Temperature distribution
in a prismatic rod with penta-
gonal cross-section.

FiG. 6. Temperature distribution
in a prismatic rod with hexagonal
cross-section.

T T

T-To2 —F—
ln(-:t)2+ 0.21339
£ 1




118

The temperature distribution is then obtained
by substituting (4.2), (4.4), and (4.5) into (1).

4 Ag -+ A,ptcosnd + Ay, p** cos 2nl
-+ Ay, p% cos 3nfy (4.7)

and substituting (4.4), (4.5), and (4.6) into (3)
yields the shape factor

S i i— (4.8)

It should be noted that A4, is the only coeflicient
affecting the value of the shape factor for r,/r,
sufficiently small.

Values of the shape factor versus the number
of sides of the polygon, “n”, appear in Fig. 2.
The temperature distribution for the triangle,
square, pentagon, and hexagon are shown in
Figs. 3,4, 5and 6.

Smith et al. [5] used an electrical analogue to
determine the shape factor for a square with a
central hole. From the graphical data, an
empirical equation for the shape factor (written
here with the notation used in this paper) was
defined as

S
m§m0%4

2

(4.9)
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It is interesting to notice the close similarity
of this equation to the equation (4.8) as re-
written in the form

LW
mf—omm9
The agreement between the analysis and the
experimental findings is excellent.

Moore [6] used field maps to study the prob-
lem of a square with a central hole. The result
reported by Moore and Smith et al. show not
only an excellent agreement for small values of
rifa, but the agreement is close even for
rija = 0-7.

STEADY TRANSVERSE HFEAT FLOW IN
PRISMATIC BARS WITH RECTANGULAR CROSS-
SECTIONS

The configuration under study is represented
in Fig. 7, and consists of a rectangle with sides
2a and 2b, having a circular inner boundary. The
temperatures at the inner and outer boundaries
are T; and T, respectively.

The mapping function which transforms the
one-dimensional heat flow in the 4, ¥ plane with
constant temperatures at ¢; and ¢, to the con-
figuration of Fig. 7 in the x,y plane is

w=d¢-+i¥

= 22 (—1)In

n=90

[wméCiZM}(M)

T -%
Tox—ae .
2in (37) - 0.01492

$=01
$=0-"1

$=1.0

$=20
$=3.0

$=05

A

FiG. 7. Temperature distribution in a prismatic rod with rectangular cross-section (&/a = 2).
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This form of the mapping function was obtained
by filling the x,y plane with an infinite matrix of
sources and sinks spaced by 2b in the x direction
and by 2a in the y direction.

The real part (¢) is:

my
cos 5-

14
cosh (x + 2nb)

¢ = i(—l)" In p
0

COS +—
1 —

(5.2)

2a

ki
cosh 5 (x + 2n2

The imaginary part (%) is:

. Ty
© S ZI
V=2 Z (—1)*+ tan—!
n=0 smh a7 (x + 2nb)

(5.3)

The value of ¢ at the outer boundary of the
rectangle is:

$o =10 4

at the inner circular boundary, when r,/2 « 1,
(or x/a € 1, y/a < 1), ¢ converges from (5.2) to

4q
&; :2111177-

— nl
“422( )+ S Ch(%@ﬂ)@_
a

m=0 n=

(5.5)

The double-summed term can be shown to be
convergent and it will henceforth be denoted
by K, so that

4
$o=2In " — 4K (5.5)
where:
(=1 b
(2m+1) 1T
K= ZZ@ T e

m=0 n=

The values of X are listed in Table 2 for various
b/a ratios.
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Table 2. Values of K for various bla ratios to be used
with equations (5.7T) and (5.8)

Mb K
a
100 008290
125 003963
1-50 i 001781
175 0-00816
2:00 0-00373
225 ‘ 000170
2:50 i 000078
3-00 ; 0-00016
400 k 69748 x 10-9
5-00 ’ 3-0140 x 10~7
10-00 ‘ 45422 x 10-14

|

|

|

The variation of @ in the x,y plane from 0 to 2
corresponds to a variation in the ¢,¥ plane
from ¥, =0to ¥, = —4n. Thus

A¥ = — 4. (5.6)

The temperature distribution is then given by
substituting (5.2), (5.4), and (5.5) into (1):

T—T,= Z;n
2In— — 4K
wk;
. ay T
cos ——
14 . 2a
©. cosh 7% (x -+ 2nd)
X (—1)"In o .7
n=0 COoS ‘2‘&
1 —
cosh (x + 2nb)
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The shape factor is obtained by substituting
(5.4), (5.5) and (5.6) into (3):

In — 2K

ar,

(5.8)

The temperature distribution is illustrated for
hfa = 2 in Fig. 7, and the values of the shape
factor versus aspect ratio b/a are plotted in
Fig. 8.

e
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 —~
A S i A fusa
i
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%-Aspect Ratio

Fic. 8. Shape factor versus aspect ratio of rectangular.

When b/a tends to infinity, the temperature
distribution of (5.7) and the shape factor, S,
as given by (5.8), describe the case of an infi-
nitely long strip with an inner circular boundary
on the center line of the strip.

STEADY TRANSVERSE HEAT FLOW BETWEEN
ECCENTRIC CIRCULAR CYLINDERS

Consider a bar with a circular outer boundary,
and an eccentric circular inner boundary. The
outer and inner boundary temperatures are T
and T; respectively.

This problem is briefly discussed in Carslaw
and Jaeger [2], and is quoted here briefly for the
sake of completeness only.

The values of the shape factor versus eccentri-
city ratio, e, are plotted in Fig. 9.
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FiG. 9. Shape factor versus eccentricity ratio.

STEADY TRANSVERSE HEAT FLOW IN
PRISMATIC BARS WITH ELLIPTICAL CROSS-
SECTIONS

Consider a prismatic bar with confocal
elliptical inner and outer boundaries. The
temperatures of the outer and inner boundaries
are T, and T, respectively.

The mapping function which transforms the
one-dimensional heat flow in the ¢, plane with
constant temperatures at ¢; and ¢, to the con-
figuration of Fig. 10 in the x.) plane is [7]:

r
The expressions for ¢ and ¥ are given in the
implicit form

w=d¢ + ¥ = —isin~? (7.1)

x? X 2 5
Frooshr g T rsmheg 1 (7
and
x2 V2
e T jicesrw b (03
Along the outer boundary
d
$o = tanh™! c (1.4)
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Fro. 10. Temperature distribution in a prismatic rod
with confocal elliptical cross-section {¢/d = 1-058;
bld = 0-10).

and along the inner boundary

b
¢, = tanh—? a (1.5)
where
2 — =2
at — b% = f2,
The values of ¥ undergo a change of
AY = 2m, (7.6)

The temperature distribution is given by
substituting (7.4) and (7.5) into (1):

7.7

The appropriate value of ¢ can be determined
from (7.2) for particular values of x and y.

The shape is obtained by substituting (7.4),
(7.5), and (7.6) into (3):

27

a+ b

The temperature distribution is shown in
Fig. 10, and the shape factor is plotted versus
the ratio of major to minor axis, ¢/d, in Fig. 11.

The case of the inner boundary degenerating
into the focal slit, a slit connecting the foci of the

60 !
bgl /
50 d 2
40
b, <
30 d 10 p
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g 7/ L
e 217 “7 Changs of Scais |
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ﬁ 15
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o / // Qa5 (T -
/J -
? / Y]

=

3 4 5
¢ Semi-major Axis
a— ~

Semi-minor Axis

N

[ e

Fic. 11. Shape factor versus ¢/d ratio of confocal
ellipses.

outer elliptic boundary, is given by the curve
bld = 0.

SUMMARY

The temperature distribution and the heat
flow for long prismatic bars with constant tem-
peratures at the outer and inner boundaries
were computed and the results are summarized
in Table 3.
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Table 3. Summary of results

Shape factor, S

Shape and notation Temperature distribution % — kS(T; — Ty)
[
|
J— 2
T-7y= — =T i (7)" - rasoe
In (~) -+ 1-13916 ¢
to 1 2
& s s I ———
T - 1-83402 (’—) cos 36 + 1-09469 (’—) cos 60 I’ — 0-56958
to to r
r ]
+ 0-39984 (7) cos 99]
Triangle e
r
L 2
T—T,= —rT;——T"—— [ln (i) + 0-54159
% ’ | In (~) + 0-54159 0
\Fo
8 : 27
-_ /76 I r 4 r 8 _f-v.—
, + 0-59131 (—) cos 40 -+ 0-05767 (—) cos 86 In"? - 027079
i 7 Fo ry ’,
r 12
+ 0:00796 ( r—) cos 120]
Square oo
|
| |
— 2
S 4 e *
In (—) +032131 - °
Fo 27

+ 029838 (:—

5 r 10
) cos 56 — 0-0111 (—) cos 108
o 11}

PRRH
-+ 0-01183 (—) cos 159}
ro

n" - 016066

¢

Pentagon ‘
y —— 2
T—T,= ﬁr—T;L [ln (i) + 021339
1“(7) +021339 - 0 )
. o ’ .

Hexagon

8 12
-+ 0-18145 ( ) cos 66 — 0-01839 ( ) cos 128

r r
o o

-+ 0-01355 ( )18 cos 180]

r
Yo

In :" — 010669

¢
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Table 3—continued
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Shape factor, S

Shape and notation Temperature distribution 1? — kS(T; — Ty
A 2
e ro1,=-5 ZTQ [m (5) + Ay
( In ({') T A, O
/I o . - ¢
8
) ‘ & y (’) 6+ A (')2" 20 ~2
{ r % + G cos nf + Ass e cos 2n nfo_
\\ y o r; 2
] -+ Asn ( ) cos 3n@]
0
“n.Sided” lar pol
patliecorall ki }‘ (See Table 1 for Ay, Au, Azn, and As,)
} !
|
|
| |
i n ) 2
n — v
., F
) i T—To=(T; — Ty —> fo
| In "t e
| " |
7(-) ¢
f |
{
Concentric circles ! ;
f |
| l
| (Zelea)ye () |
§ T— Ty = 7, ~ Tﬁz . In Iy rg ¥y [ ;
i Zcosh*’( +p‘_€) §+f‘<_3)2¢(31)2 i
| 2p; ro ry  ryl | \ry |
| .
— cosh~t (1 /2)’ + 6)
} € 2
- 1+ p%— 62)
-1
Where: cosh ( 2p,
= ¢
P: = ro; € To
(1 — p2 4 &2

Eccentric circles

4¢?

ro 2¢

{ ifu_I—Pf+ez
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Table 3—continued

T r
} Shape factor, S
|

I S
f2cosh?¢ = f2sinh? ¢

Compute ¢ from:

Shape and notatio T istributi
p ion emperature distribution % ST, Ty
- A
T}’ /o , [ wy |
1 cos 3
| 7 ; cosh - (x + 2nb) |
: . T,— T, 2a | 27
- — > T —Ty= — i S (~1)rin - j " -
_ COs In — 2K
21n o, 4K s ] B C 2({ O o,
cosh . (x = 2nb) |
2a
(See Table 2 for K)
|
— - j
. my
1 cos ,
—— cosh :x ‘\‘ k2
T—-T,=""'" -"In| ——— ! 4a
4a my In
21In cOos .- ! ar,
T, [ 2a
X ‘
h ‘
cosh }
|
l
T, — Ty ¢t d |
: Tems et ) | 2
| . a -
In ¢ d
. . 1 a b
Compute ¢ from: -~~~ -+ =1 |
P "ficosh?’¢ ' fZsinh®¢ |
: f
i i
J |
! |
‘ !
|
T, - T, c—d
! ¢+ d in ¢ i d
| /
|
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